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Gas-phase mass-transfer resistance at PEMFC electrodes
Part 1. Diffusive and forced migration
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Abstract

The mass-transfer phenomena at the electrodes and, in particular, the diffusion of oxygen at the cathode significantly affect the limit performance
of PEMFCs. Some particular geometric arrangements, such as the interdigitated or serpentine, have demonstrated their effectiveness in lowering
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iffusive resistances.
It is possible to have a better understanding of these phenomena by determining the various possible diffusive regimes taking place inside the

orous layer close to the electrodes. In each regime the interaction between diffusive and forced flows can be expressed in terms of Peclet numbers
nd the overall diffusive resistance in terms of Sherwood numbers.

In this way, the comparison of traditional and non-traditional geometric arrangements can be more deeply studied, so that the problems relating
o the simulation and optimisation of the cell can be more efficiently dealt with.

2005 Elsevier B.V. All rights reserved.
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. Introduction

The full practical relevance of the transport phenomena
ccurring in polymeric membrane fuel cells (PEMFCs) is now
lmost universally acknowledged. First of all, the proton and
ater migration through the polymeric membrane, which deter-
ines the membrane polarisation, is sensitive to membrane

ydration, so humidity control has become a central goal of
EMFC studies. These phenomena have been discussed else-
here [1–8].
In this paper attention will be paid to the gas-phase mass

ransfer [6,9–13]. Some recent articles [14] have emphasised
he role of diffusive phenomena occurring in polymeric mem-
rane fuel cells: the mass transfer by diffusion at the electrodes

∗ Corresponding author. Tel.: +39 010 3532926; fax: +39 010 3532589.
E-mail address: betta@diam.unige.it (E. Arato).

and, in particular, the diffusion of oxygen at the cathode sig-
nificantly affects the limit performance of the cell. Some new
geometric arrangements for feeding the cell, such as interdigi-
tated geometry, have demonstrated their effectiveness [2,14,15]
in lowering diffusive resistance.

Even more recently [16], attention has been centred on
similar results that can be obtained with serpentine geometry, so
widening the range of the parameters to be taken into account
in design and optimisation. In that work the discussion of the
migration flows at the electrode was based on a simplified
physical–mathematical description and its analytical solution
and, for that purpose, a number of simplifying assumptions
were used; many of those are widely acceptable and quite usual;
others, a little less obvious or partially implicit, are still fully
coherent in terms of a first approximation discussion. But, as is
to be expected, the most delicate points concern an appropriate
choice of the boundary conditions.

While other, more detailed investigations of the matter are
certainly advisable, a better understanding of the role of mass-
transfer phenomena is readily achievable, even now, by simply
378-7753/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2005.07.074
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Nomenclature

b width of channel (m)
d length of the diffusive layer (m)
D effective diffusivity in the porous medium

(m2 s−1)
DM molecular diffusivity in the continuous gas phase

(m2 s−1)
f1 function of x in Eq. (4)
f2 function of x in Eq. (5)
h thickness of the diffusive layer (m)
k permeability of the porous medium (m2)
L length of the channel (m)
P absolute pressure (kg m−1 s−2)
Pe Peclet number, defined in (19) and (20)
Sh Sherwood number, defined in (24)
tD diffusion times, defined in (16) and (17) (s)
tR residence time, defined in (18) (s)
v velocity in the porous medium (m s−1)
x spatial co-ordinate, perpendicular to the electrode

(m)
y spatial co-ordinate, parallel to the electrode (m)

Greek symbols
µ viscosity of the gas (kg m−1 s−1)
ρ density of the gas (kg m−3)
ω mass fraction

Subscripts
m mean value
r reference value
x x-axis, perpendicular to the electrode
y y-axis, parallel to the electrode
1 channel 1
2 channel 2, adjacent to channel 1

considering the various possible diffusive regimes. In the follow-
ing sections, the various limit regimes will be determined and
the interaction of diffusive and forced flows for each regime will
be expressed in terms of Peclet numbers and the overall diffu-
sive resistance will be expressed in terms of Sherwood numbers,
which are, in turn, functions of the Peclet number.

The results of this approach will then be used in the dis-
cussion of a number of experimental findings regarding tradi-
tional [7,17], interdigitated and serpentine [16] cells. A better
understanding of the role of gas mass transfer will show its
effectiveness in explaining some important differences in the
performance of these cells, especially in terms of limit current.
In such a way the comparison of traditional and non-traditional
geometric arrangements and the related optimisation problems
can be more clearly set out.

Successively, in the second part of this work, a compari-
son of interdigitated and serpentine geometries will be further
developed by explicitly taking the pressure differences between
contiguous channels and their dependence on the head losses
through the channels into account.

2. A reference scheme

The spatial domain near the electrode surface considered here
has a rectangular h(b + d) section, where h on the x-axis is the
thickness of the diffusion layer, d on the y-axis is the space
between one channel and the next and b is the width of each
adduction channel (see Fig. 1). Following Zhukovsky and Pozio,
[16], the diffusion and migration phenomena in the partial hd
domain can be described according to the differential equation

−ρD

(
δ2ω

δx2 + δ2ω

δy2

)
+ ρv

δω

δy
= 0, 0 < y < d, 0 < x < h

(1)

In Eq. (1) the density ρ and the diffusivity D of the gas phase
moving inside the porous medium are considered constant; the
stagnant film effects are neglected, but the correspondent errors
are surely less than 5%; a steady state can also be assumed,
because of the diffusion times of the porous system, which are
of the order of 1 s or less.

To describe the flow field, a uniform velocity v along the
y-axis is considered. This simplification is rather obvious from
many points of view, but it is certainly to some extent unrealistic
at the boundaries (y = 0 and y = d), where the flow field has to
join the external one.
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It is evident that the portion of the porous medium cor-
esponding to the channel (see Fig. 1) is not considered in
etermining the spatial domain. In such a way a fraction of the
eagent reaching the electrode is forgotten and the total rate will
e underestimated.

The boundary conditions associated with Eq. (1) are

= 0,
δω

δx
= 0 (2)

= h, ω = 0 (3)

= 0, ω = f1(x), f1(0) = ω1 (4)

= d, ω = f2(x), f2(0) = ω2 (5)

Beside the obvious, and fully acceptable, assumption of an
mpermeable metallic surface at x = 0, it is also useful to assume
n instantaneous reaction on the cathodic surface at x = h. This is
he approach to define the reference behaviour in terms of limit
urrent.

Fig. 1. The spatial domain considered.
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The other two boundary conditions for y = 0 and y = d cor-
respond to the assumption of a reasonable composition profile
through the layer. For a given f1 and f2 the solution of the system
ω(x, y) can be obtained and the mean flux of the reagent (i.e.
oxygen), which leaves the domain by reacting at the electrode,
can be calculated as

Nmx,x=h =
(

1

d

) ∫ d

0
Nx,x=h dy

= −
(

ρD

d

) ∫ d

0

(
δω

δx

)
x=h

dy (6)

or as the sum of the fluxes entering the domain

Nmx,x=h =
(

h

d

)
(Nmy,y=0 − Nmy,y=d)

=
(

1

d

) ∫ h

0
(Ny,y=0 − Ny,y=d) dx

= −
(

ρD

d

) ∫ h

0

[[(
δw

δy

)]
y=0

−
(

δω

δy

)
y=d

]
dx

(7)

When the functions f1 and f2 are specified as
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kind of solution is to be expected for the various possible limit
regimes.

3. Definition of the limit regimes

For the purpose of determining the limit regimes, it is useful
to make reference to the following characteristic times. Two
diffusion times are of interest, the axial diffusion time (along
the y-axis)

tDy = d2

D
(9)

and the transversal diffusion time (along the x-axis)

tDx = h2

D
(10)

They have to be compared to the residence time inside the
porous medium

tRy = d

v
(11)

so that the correlated dimensionless parameters, such as the axial
Peclet number,

Pe y = tDy

tRy

= d
v

D
(12)

a

P

c

b

•

•

•

= 0, ω = ω1 cos
πx

2h
(4′)

= d, ω = ω2 cos
(πx

2h

)
(5′)

he system leads to the solution reported in [16].
In particular, for a negligible velocityv, that is a fully diffusive

igration, we have

= 0, Nmx,x=h =
(

ρD

d

)
(ω1 + ω2)tgh

(
πd

4h

)

≈
(

ρD

d

)
(ω1 + ω2),

πd

4h
> 3 (8)

This solution is probably fairly accurate: the mass-transfer
egime is completely diffusive, the mean driving force is
ω1 + ω2)/2 and the mean diffusion path is about d/2. However,
correction still has to be introduced to take into account the

raction of the reagent rate referring to the width b of the channel.
As the velocity v increases, the sinusoidal boundary condi-

ions (4′) and (5′) become less realistic. For high velocities it
ppears more reasonable to make reference to a uniform profile
long the x-axis at the beginning of the domain

= 0, x < h, ω = ω1 (4′′)

hile the profile at the end (y = d) becomes quite insignificant.
In the light of the above discussion, there still appears to be a

ide area for investigation by analytical or numerical methods.
y using only a very simple approach, however, a preliminary
nd introductory, but reliable analysis of the whole problem is
mmediately available, making it possible to determine what
nd the transversal Peclet number

e x = tDx

tRy

= h2v

dD
(13)

an be defined.
When d � h, as can reasonably be assumed, Pe x � Pe y.
Besides the already cited diffusive regime, two others must

e considered:

R1:

Pe y � 1 (14)

in which the flux of the reagent depends on the mean driving
force and, then, on the conditions at both the beginning and
the end of the spatial domain according to Eq. (8).

A forced regime must also be considered:
R2:

Pe y � 1 (15)

in which the effects of axial diffusion are negligible in com-
parison to the forced migration: the inlet composition at the
beginning of the domain can be considered uniform along the
x-axis, as explained in condition (4′′), while the composition
at the domain end loses importance.

Within the forced regime, two more sub-regimes can be
considered; a flow-rate controlled regime and a pellicular-
forced regime. In a flow-rate controlled regime
R2.1:

Pe y � 1, Pe x � 1 (16)
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the residence time is long enough to allow the diffusion of
the entire reagent at the electrode. The flux to the electrode
is then controlled by the forced flow rate entering the domain
with a good approximation

Nmx,x=h ≈
(

ρv
h

d

)
ω1 (17)

and is directly proportional to the velocity. In a pellicular-
forced regime

• R2.2:

Pe y � 1, Pe x � 1 (18)

the residence time is much shorter than the transversal diffu-
sion time, so that only the reagent of a thin pellicular layer
near the electrode can be consumed. The flux and its mean
value can be derived from the well-known formula [18] for
transient diffusion on a semi-infinite layer

Nmx,x=h ≈ ρω1

(
4D

v

πd

)1/2
(19)

and now depends on the square root of the velocity.

In both the forced sub-regimes, where the migration flow field
is much more important than the diffusion one, any description
yielding a result independent of the velocity is obviously quite
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a b/2 mean path in series with heterogeneous diffusion on an h
path) we have

N ′
mx,x=h ≈ (ρD)(ω1 + ω2)

h + bD/(2DM)
(22)

In such instances values of Sh can be obtained

Sh ≈
[
ω1 + ω2

ω1

] (
D

DM

) [
b

d + b

]
h + b + bD/(2DM)

h + bD/(2DM)
(23)

whose order of magnitude, obviously independent of the veloc-
ity, is around 0.2–0.3, the same as the ones we have adopted for
the traditional geometries [14].

In the forced regimes the correction for the channel zone is
less important. In particular, for the flow-rate forced regime, Eq.
(17) can be assumed to be all-inclusive, also when referring to
the whole length (d + b)

dNmx,x=h + bN ′
mx,x=h ≈ ρvhω1 (24)

Sh ≈
[

b

d + b

] (
vh

DM

)
=

(
h

d

) [
b

d + b

] (
D

DM

)
Pe y (25)

Similarly, for the pellicular-forced regime, reference can be
made to Eq. (19) in terms of the whole length (d + b)

d

[
4Dv(d + b)

]1/2
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. The Sherwood number

By introducing the reference flux

r = ρDMω1

b
(20)

hich corresponds to the diffusion in the homogeneous gas
hase of a square section bb of the channel; the ratio of the cal-
ulated flux and the reference flux defines the Sherwood number
e have used in a number of works on the simulation of PEM-
Cs for different geometries [2,14]. For a full analysis, the entire
lectrode surface has to be considered in the definition of the
ctual mean flux if it is to be compared to the reference flux:
o, apart from the mean flux referring to the length d (Nmx, x=h),
llowance must also be made for the mean flux referring to the
ength b (N′

mx, x=h), giving

h = dNmx,x=h + bN ′
mx,x=h

(d + b)Nr
(21)

In such a way, a Sherwood number of the order of unity should
e obtained if the homogeneous mass transfer in the channels
s controlling, and Sh � 1 is obtained when the diffusion in the
orous medium is controlling; the effect of a forced-flow field
an further increase the Sherwood number to some unities or
ore.
Making reference to a single-channel configuration in the

iffusive regime, assuming the result of (8), and adding a rea-
onable estimation for the fraction of the reagent rate referring
o the width b of a square channel (homogeneous diffusion on
Nmx,x=h + bN ′
mx,x=h ≈ ρω1

π
(26)

h ≈
[

b

d + b

] (
D

DM

) [
4v

d + b

πD

]1/2

≈
[

4b2

πd(d + b)

]1/2 (
D

DM

)
(Pe y)1/2 (27)

Then, in these regimes, an increase in the velocity and Peclet
umbers causes an increase in the Sherwood number, which can
asily reach values of the order of unity or more, similar to the
nes we have used for the interdigitated channel geometry [14].

By summarising, Eqs. (23), (25) and (27) we can demonstrate
he dependence of Sh on Pe y for the three limit regimes R1 (dif-
usive) (14), R2.1 (forced, flow-rate controlled) (16) and R2.2
forced, pellicular) (18), respectively. Fig. 2 gives an example of
hese trends and shows that the regime is diffusive for low val-
es of Pe y, controlled by the flow-rate for intermediate values
f Pe y and pellicular for high values of Pe y. For instance, by
ssuming, as in case (a) of Fig. 2:

= d, h = 0.1d, D = 0.1DM, ω1 = ω2 (28)

e have

R1:

(Pe y � 75), Sh = 0.38 (29)

R2.1:

(75 � Pe y � 250), Sh = 0.005Pe y (30)



204 E. Arato, P. Costa / Journal of Power Sources 158 (2006) 200–205

Fig. 2. An example of the dependence of Sh on Pe y for ω1/ω2 = 1; D/DM = 0.1;
b/d = 1; (a) h/d = 0.1; (b) h/d = 0.2.

• R2.2:

(Pe y � 250), Sh = 0.08(Pe y)1/2 (31)

and the range of Pe y in which each regime is prevalent can easily
be highlighted.

5. Traditional and non-traditional cells

The migration velocity v is directly connected to the mechan-
ical driving force, that is the pressure difference between the
beginning (channel 1) and the end (channel 2) of the domain
migration path. As the pressure differences are low, the flow
field can be assumed to be uniform and h � b; a simple inte-
grated form of the Darcy equation for incompressible fluid is
sufficient for a rather good evaluation of v

v = k(P1 − P2)

µd
(32)

By including this last equation in a detailed simulation tool,
such as the one described in our previous work [14] the Peclet
number and then the Sherwood number can be evaluated at each
point of the plane of a cell and a more realistic consideration
of the gas mass-transfer limitation can be taken into account.
The final result, in terms of the characteristic curve, is a better
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of a traditional cell can be obtained by assuming a low constant
Sherwood number [14].

5.2. Interdigitated cells

On the other hand, in interdigitated cells, there is a forced
migration of the whole flow from the adduction channel to
the adjacent outlet one. For medium–high current densities, the
value of v is then of the order of 30–60 cm s−1, with Peclet
numbers of the order of 150–300 and Sherwood numbers of the
order of 1.5–2. Flow-rate forced regimes are surely involved,
so that the Sherwood number of the cell depends on v and
then, at constant oxygen utilisation, increases as the cell current
increases. The performance of the entire cell can be charac-
terised using a Sherwood number that increases with the current
or simply by a high constant Sh. At a low current, Sh has almost
no influence, while at medium and high currents the assump-
tion of a high, constant Sh is sufficient for a good simulation
[14]. The advantages of interdigitated cells in terms of mass
transfer resistances are evident, but the details of the depen-
dence of Sh on Pe y remain, to some extent, difficult to demon-
strate.

5.3. Serpentine cells
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rediction of the behaviour of the cell in the high current range
nd, in particular, a good a priori estimation of the limit current
f the cell.

As a matter of fact, many of the differences between tradi-
ional and non-traditional cells can be interpreted in terms of gas

ass-transfer limitations.

.1. Traditional cells

In a traditional cell the channels are fed in parallel, so that no
ignificant pressure difference can exist between two adjacent
hannels and the assumption of v = 0 is quite reasonable. So,
traditional cell should run under the diffusive regime R1 and

hould be characterised by a constant Sherwood number of the
rder of 0.2–0.4, according to the details of the geometry (h, d,
) and the permeability of the medium (D/DM). A good fitting
More information can be obtained by considering the ser-
entine geometry and the experimental results obtained by the
aboratories of the Italian National Agency for New Technolo-
ies, Energy and the Environment (ENEA) [16]. In a serpentine
hannel, the pressure difference between two adjacent counter
urrent portions is related to the head losses through the channel

ig. 3. An example of the fitting of the characteristic curve of a serpentine three-
hannel PEMFC. Data from [16]. The Sherwood numbers used for the various
tting attempts are: (a1) low, constant; (a2) high, constant; (b) increasing with

he cell current.
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Fig. 4. An example of the fitting of the characteristic curve of a serpentine 10-
channel PEMFC. Data from [16]. The Sherwood numbers used for the various
fitting attempts are: (a1) low, constant; (a2) medium, constant; (b) increasing
with the cell current.

itself; at this pressure difference only a fraction of the whole
flow-rate is bypassed as a migration flow, so that the values of
v are lower than in interdigitated cells. The number of paral-
lel channels in the serpentine arrangement is also important. In
a serpentine arrangement with many channels the head losses
are lower; moreover, only the external channels are free to
exchange mass by migration, so that the global effect is even
lower.

These considerations are well illustrated by Figs. 3 and 4. In
Fig. 3 a three-channel serpentine cell is considered: in such a
system, a high Sh, strongly dependent on current, can be pre-
dicted from the estimate of v. In fact, the fitting is already good
when a high constant Sh is assumed, but some improvement is
also evident when reference is made to an Sh increasing with the
current.

The effect is more evident in Fig. 4, where a 10-channel ser-
pentine cell is considered. Medium values of Sh are to be used,
and the assumption of a Sh that increases with the current yields
a quite appreciable improvement in the fit.

6. Conclusions

In this work the relevance of the mass transfer of oxygen
at PEMFC cathodes is stressed and a straightforward discus-
sion of the interaction between diffusion and forced migration
is presented in terms of limit regimes. Three limit regimes are
d
b

•

• R2.1, a flow-rate controlled regime in which the velocity of
migration is the only controlling parameter;

• R2.2, a pellicular-forced regime in which only a fraction of
the forced flow, determined by diffusion, is effective.

For each regime the mass transfer can be characterised in
terms of Sherwood number and a particular function Sh(Pe y) by
means of which the Sherwood number can be calculated from
the Peclet number.

The results of this approach are then used in the discussion
of the performance of different geometric arrangements, such
as traditional, interdigitated and serpentine cells. As traditional
cells appear to be characterised by a low constant Sh, their dif-
fusive limitations can be overcome by using the interdigitated
configuration where a much higher Sh is attained. Serpentine
cells are characterised by intermediate values of Sh, depending
on the number of channels, and show a more evident dependence
on the cell current.

A more complete comparison of the various types of cell also
requires the explicit consideration of the pressure field on the
plane of the cell or, at least, along a couple of adjacent channels.
This question will be the argument of the second part of this
work.
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